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ABSTRACT

Resonant Ultrasound Spectroscopy (RUS) is a method that uses experimental and numerical techniques. It
as been set up in the 1990’s while calculation speed of computers increases. It aims to characterize the
elastic moduli of a material sample by matching experimental sets of resonance frequencies with calculated
ones and, by resolving an inverse problem, get the elastic moduli of the sample. RUS processing usually
uses the Rayleigh-Ritz method to compute the eigenfrequencies. Levenberg-Marquart’s (LM) algorithm is
applied usually in order to minimise the relative error between experimental and numerical eigenfrequencies.
In order to apply to arbitrarily shaped samples the Finite Element Method (FEM) must be used because
the Rayleigh-Ritz method is efficient only for simple parameterizable shapes. Here FEM is used to calculate
the numerical set of frequencies thanks to Code_Aster software. Matlab© is used to script the different
operations : create mesh, launch the FEM calculation and solve inverse problem using LM algorithm. The
applicability of this modified RUS method is verified by testing all the calculation chain with an isotropic
cylindrical sample of copper, so the elastic tensor is defined by the two Lamé parameters.

INTRODUCTION

The knowledge of the mechanical moduli of a material
can be very important in many situations. In structural
mechanics of course but also in medical applications.
Indeed, by knowing mechanical moduli of somebody’s
bones it is possible to deduce the health of his skeleton.
A traditional way to get the mechanical moduli is to
realise a tensile test. But it is not possible to realise such
a test on little objects such as a mouse teeth. That’s
where vibration analysis is used. Indeed we only need to
get the frequency response of the sample to obtain the
mechanical moduli thanks to the Resonant Ultrasound
Spectroscopy method.

The first work on this subject was made by Migliori et
al. [4] in 1993 and RUS was formalized by Maynard [3]
in 1996. At this time, only common shaped samples are
used for RUS. Indeed, the numerical set of frequency was
calculated thanks to the Rayleigh-Ritz method which is
only available for simple shaped materials. In 2004 FEM
is applied to RUS by Plesek et al.[5] using Fixed Point
Iteration method (FPI).

The objective of our works is to design and validate
a numerical code to solve the FEM-RUS optimisation
problem with Levenberg-Marquart (LM) algorithm. The
used of the optimisation toolbox of Matlab is necessary,
that’s why we need to realise a coupling between Matlab
and Code_Aster. The optimisation by LM will be tested
and validated. As we aim to know the elastic tensor of
real objects and samples, the applicability of this method
for a short calculation time is studied.

METHOD

The RUS consists in three parts. First, the frequency
response of the sample is measured and the eigenfre-
quencies obtained. Then an equivalent FEM model is
created and the numerical eigenfrequencies can be cal-

culated. Finally the minimisation of the relative error
between the two set of frequencies is realised. All this
experimental/numerical method is shown schematically
on figure 1.
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Figure 1: Schematic description of the resonant ultra-
sound spectroscopy method

The aim of this work is to verify the feasibility of such a
method, that is why we will determine the elastic tensor
of a cylinder of copper, with a radius of 4,98mm and
9,5mm high : an isotropic material.

Experiment

In our study the frequency response of the sample is ob-
tained by placing it between two transducers : an emitter
and a receiver as shown in figure 2. The sample is excited
between 110 kHz and 350 kHz and the frequency response
is then obtained by calculating the ratio between the
excitation spectra and the received signal spectra. In
order to measure this frequency response we use a signal
generator that generate very short sine for discrete fre-
quencies (Bode 100, Omicron electronics GmbH, Klaus,
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Austria). The receivers output signal is preconditioned
befor recording by a broadband charge amplifier (HQA-
15M-10T, Femto Messtechnik GmbH, Berlin, Germany).

Once the frequency response is obtained we need to detect
the eigenfrequencies. For this purpose, a pic detection
is done. The axial symmetry (cylindrical sample) of our
sample induce double frequencies, it means two modes
that have very close eigenfrequencies. It means that for
some frequencies two different modes can be excited. We
chose here to circumvent the problem of matching double
frequencies by keeping only one frequency, the average
of the two. This choice is motivated by the fact that,
whether the FEM would always calculate those double
frequencies, the experiment could not always detect them
because of the polarization of the transducers and, so,
the matching would be very difficult.

Figure 2: Photograph of the experiment, cylinder of
copper between the emitter and receiver, supposed with
free boundary conditions.

Optimisation

We introduce here the optimisation problem. In our study
we need to match two set of frequencies. For this purpose
we will need to minimise a cost function F defined by
the sum over the frequency of the squared relative error
between experimental calculated resonant frequency and
numerical calculated ones, so :

F =
∑

i

∣∣∣∣ |fexp
i −fnum

i |
fexp

i

∣∣∣∣2 , (1)

where fexp
i is the ith experimental eigenfrequency and

fnum
i the numerical one.

The optimisation process is done using the Levenberg -
Marquardt algorithm in Matlab. It can deal with multi-
ple variables and non-linear problem. It is a very smart
iterative algorithm that use the advantages of the two
major algorithms of matrix inversion : the Gauss-Newton
method and the gradient method. The first one is cal-
culating the steepest descent while the second aims to
linearise F near to its minimum. For every iteration the
two algorithm calculate the n+ 1 term by :{

xn+1 = xn−A−1B, for G-N method,
xn+1 = xn−D−1B, for gradient method, (2)

where A is the Jacobian matrix of the cost function, D
is diagonal matrix and B the gradient vector of F .

The Levenberg-Marquardt algorithm aims to combine
those two algorithms by calculating :

xn+1 = xn− (A+λLMD)−1B. (3)

The λLM parameter defines the relative importance of
the two different methods in the solving process, it is
called the damping factor. This combination of two well
known algorithms explain why it is called a "smart al-
gorithm". The algorithm determines the optimum value
of the λLM parameter for each iteration. In fact λLM is
about 0,01 at the first iteration and it’s reducing step
by step. So first, the algorithm is more taking care of
the steepest descent and then of the little variations of
the cost function. This is very powerful because it means
that, if there is only one local minimum of the function,
the minimization will be achieved with a few iterations
even if the starting point of iterations is far from mini-
mum.

It is important to notice that for each iteration of the
minimization problem this algorithm needs three numer-
ical calculation in order to calculate the 2D derivative of
the cost function by finite difference, which influences the
computation time of this method. When using Rayleigh-
Ritz method, the derivative are readily available, which
is not the case with the FEM.

Bernard et al. [2] used sixteen frequencies to estimate the
nine component of the elastic tensor for an anisotropic
material. Knowing that, we use only the nine first fre-
quencies of our sample (experimental and numerical) for
the optimisation because we only have to determine λ
and µ, the two Lamé parameters.

Coding FEM and LM

All the interest of this paper is to interface a FEM soft-
ware with an optimisation algorithm in order to create a
fully functional program that can, knowing the frequency
response of a sample, determine precisely and quickly its
elastic tensor.

As we already discuss it is Code_Aster that is chosen
as FEM software in this work, it is an EDF developed
software. Indeed it has a non-negligible advantage : it
can be used only with command lines which is the best
for our goal to control all the process with one and only
program in Matlab. This way we can manage a whole
chain of instruction such as lunch the generation of the
mesh (by GMSH), start the calculation with Code_Aster
,read the text formatted result files and do the optimi-
sation in one program. We recall that Code_Aster can
calculate rather the modes shape and eigenfrequencies.

One of the function called by the program aims to make
the mesh that will be used for the FEM with the specify
cylinder dimension and with specific characteristic length
(CL) of the mesh that is needed. An example of used
mesh is shown in figure 3. Other functions create all
the files Code_Aster needs to run the calculation. For
example, one of the functions has to write a text file
and change the Young modulus and Poisson’s ratio (co-
efficients use by Code_Aster linked to λ of our material
automatically, that is important for the optimisation to
work.

We are now interested of estimating the better ratio
time of calculation / relative error for our FEM cal-
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Figure 3: Mesh of our 9,54mm high copper sample for a
characteristic length of mesh CL = 1mm

culation. That’s why we compare our first frequencies
with resonant frequencies calculated with Rayleigh-Ritz
method. The results are available on figure 4. In this
study the mesh is constituted of quadratic elements in
order to increase the computation speed and decrease
the characteristic length of the mesh. As we can see on
this results from a characteristic length (CL) of mesh
of 1mm (= 9 points/λmin) the relative error is quite
acceptable (0.015 % for the first frequency and up to 0.1
% for the last frequency we are going to use to resolve
the inverse problem). By seeing our results we could see
that eleven points per wavelength would be better but
in term of calculation time its not possible. Indeed it
multiplies by 2,5 the time of calculation compared to 9
points/λmin calculation which already takes about 35
seconds. The minimum wavelength used λmin is defined
with the second Lamé Parameter µ, the density ρ and
the maximum frequency of our study fmax = 250Hz :

λmin = cmin

fmax
with cmin =

√
µ

ρ
. (4)
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Figure 4: Relative error between Rayleigh-Ritz calculated
frenquency and Finite Element Method calculation in
function of the number of points by minimum wavelength
(maximum frequency calculated is 250 kHz)

We can see on figure 5 an example of experimental fre-
quency response compared to the results of the FEM
code for standard elastic moduli values of copper. It is
clear that the magnitude of the numerical calculated fre-
quencies is good, but their are some differences. Indeed,
the aim of this method is to quantify the variations to
the theoretical values in order to be able to detect some
specific modifications and defaults of the material.
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Figure 5: Experimental frequency responce of the copper
specimen (in blue line) detected pics (in red circles) and
Code_Aster calculated frequencies (in black disks) for
standard elastic moduli values of copper[1]

In order to solve the inverse problem we use the lsqnonlin
Matlab function which minimises the cost function F
with LM algorithm. It’s a matter of fact, the algorithm
needs the local derivatives for each iteration, which are
calculated by finite differences. The space between the
points where the cost function is estimated by the algo-
rithm in order to calculate the derivative is really tiny.
Based on this observations we suppose that the input
parameters of the function have to be normalised so that
the derivative is not estimated to zero and the iteration
process can lead to a coherent result. This optimisation
is done over two coefficients : C11 and C44. Those to
coefficients are the components of the elastic tensor, they
can easily be linked to the Lamé parameters with :

C44 = µ, C11 = λ+ 2µ. (5)

RESULTS

The results and computation time presented bellow have
been calculated in a cluster with Intel®Xeon®E5620
processors clocked at 2.40GHz. For our work, no compu-
tational parallelization is done and only one processor
and 2,5GB of Random-access memory (RAM) is used
when CL = 1mm.

In order to control and verify the optimisation process
we decided to calculate the cost function F for multiple
combinations of C11 and C44. The figure 6 shows the
calculated "map". Moreover we also plot the (C11,C44)
couple use by the optimisation process (red lines).

The elastic moduli obtained during this optimisation are
compared to "classical"[1] ones in table 1.
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Figure 6: Cost function F for C11 and C44 variations
and optimisation example with stating point (in green di-
amon), result point (in white diamon) and the algorithm
iteration points. At final point F = 0,027%.

C11 (GPa) C44 (GPa)
Classical values 189,65 48,12

RUS calculated values 201,13 47,61
Table 1: RUS calculated values of elastic moduli of the
cylinder of copper compared to the common used values
of copper in GPa

DISCUSSION

The figure 6 carries two informations. First, we can see
that C44 is the parameter that is most influential in low
frequency (our case here, only the nine first frequency are
used). Indeed the very tiny variation of the cost function
with C44 involve a huge error on the measure contrary
to C11. The second information is the (C11,C44) cou-
ple values taken during the iteration. In this example
five iterations are needed to get to the minimum point
(including calculation at the first point). For this opti-
misation, 10 minutes are needed to get to the minimum.
In term of stopping parameters, we tested the optimisa-
tion with a very low tolerance on the residual and the
algorithm stopped when its about 2,7.10−4 because of
non-further progress possible. So, the stopping param-
eter is taken not too tiny to avoid non-useful calculations.

The table 1 shows that our results are fully coherent with
classical elastic moduli with a little difference induced by
the variability of making the material. Moreover, we can
estimate the error on the obtained moduli. Indeed, the
value of the cost function at final point of optimisation
is 0,027% and the convergence test indicates that the
sum of the squared errors (over the 9 first frequencies) is
about 0,02%. So the real error on the estimated values
is 0,047%.

We have presented in this paper results that are obtained
by an all chain of instructions. We managed to control
those instructions with one and only program that create
the good mesh with quadratic or linear element and with
the wanted dimensions. Then it create the Code_Aster
command files with the specific mechanical values wanted
and launch them all. Finally, the results are read from
the text file. This chain of commanding Code_Aster and
GMSH is then included in the the calculation of the cost

function and in the optimisation process.

According to the results we presented in this paper we
believe we have validated this elastic moduli character-
ization process with a simple sample. But this study
can easily be upgraded to manage anisotropic materials.
Indeed only more frequencies have to be considered and
a few lines of the Code_Aster command file have to be
changed.

We believe that this way of using RUS with FEM and LM
algorithm is fully usable for any little arbitrarily shaped
anisotropic sample, by creating a equivalent mesh, with
a totally reasonable computation time.
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